The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning

Florence Solari1,*, Alex Bateman2 and Julie Ahringer1,†,‡

1University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK
2The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
*Present address: Wellcome CRC Institute, Tennis Court Road, Cambridge CB2 1GR, UK
†Author for correspondence (e-mail: jaa@mole.bio.cam.ac.uk)

Accepted 19 March; published on WWW 4 May 1999

SUMMARY

We show here that two functionally redundant Caenorhabditis elegans genes, egl-27 and egr-1, have a fundamental role in embryonic patterning. When both are inactivated, cells in essentially all regions of the embryo fail to be properly organised. Tissue determination and differentiation are unaffected and many zygotic patterning genes are expressed normally, including HOX genes. However, hlh-8, a target of the HOX gene mab-5, is not expressed. egl-27 and egr-1 are members of a gene family that includes MTA1, a human gene with elevated expression in metastatic carcinomas. MTA1 is a component of a protein complex with histone deacetylase and nucleosome remodelling activities. We propose that EGL-27 and EGR-1 function as part of a chromatin regulatory complex required for the function of regional patterning genes.

Key words: SANT, ELM1, ELM2, vab-7, NURD, Histone deacetylation, Nucleosome remodelling, Caenorhabditis

INTRODUCTION

During embryonic development, cells are determined, differentiate and become organised into tissues. These events are regulated by extrinsic and intrinsic signals that are often translated into changes in the expression and/or activity of transcription factors. Therefore, how transcription factor activities are regulated is important for understanding most developmental processes. For example, the HOX genes encode transcription factors that pattern tissues along the anteroposterior axis of most or all animals (reviewed in McGinnis and Krumlauf, 1992). Recently, the identification of co-factors that act with HOX proteins have given insights into the mechanism by which they regulate their targets (for recent reviews, see Fisher and Caudy, 1998; Mann and Affolter, 1998). However, how developmental transcription factors act in the context of chromatin is still largely unknown.

Recent studies have revealed that a gene’s transcriptional activity can be regulated through chromatin modifications: hyperacetylated chromatin is generally associated with active genes, whereas hypoacetylated chromatin is associated with repressed genes. Protein complexes that carry out ATP-dependent nucleosome remodelling activities may be involved in regulating transcription. Many of these complexes interact with sequence-specific transcription factors, suggesting a model whereby the transcriptional activity of a promoter is regulated by locally perturbing chromatin structure (for recent reviews, see Kadonaga, 1998; Struhl, 1998).

Here we show that the C. elegans gene egl-27 encodes a protein similar to MTA1, a component of a protein complex with ATP-dependent nucleosome remodelling and histone deacetylation activities (Xue et al., 1998). No previous members of this gene family have been identified by mutation. The C. elegans genome contains a related gene, egr-1 that has a redundant role with egl-27; in embryos where both are inactivated, the pattern of cells in all regions of the embryo is abnormal. Furthermore, although HOX genes have normal expression, a HOX gene target gene fails to be expressed. We propose that protein complexes containing EGL-27 family members regulate the activity of transcription factors involved in embryonic patterning.

MATERIALS AND METHODS

Strains and alleles

Cultivation of C. elegans was as in Brenner (1974). The following mutant alleles and deficiencies were used:

LG II: bli-2(e768), dpy-10(e128), egl-27(e2394), egl-27(n170), egl-27(we3), unc-4(e120), mndf30, mndf96, mndf39, mndf68, mndf61, mndf88 and maDf4.

LGIII: vab-7(ed6), unc-49(e362) and vab-7(ed6).

The following strains were used as markers in expression studies: ayIs7 [hlh-8::gfp] IV (Harfe et al., 1998), el24 [vab-7::lacZ] II
unc-49(e362) animals were mutagenized using EMS as in Wood (1988). 484 F1s were cloned (representing 968 chromosomes) and their progeny scored for stronger posterior defects. 5 enhanced animals were mutagenized using EMS as in unc-49(e362); vab-7(ed6) (Ahringer, 1996), strains were isolated, the strongest of which contained and their progeny scored for stronger posterior defects. 5 enhanced animals were mutagenized using EMS as in unc-49(e362) vab-7(ed6) (Ahringer, 1996), strains were isolated, the strongest of which contained and their progeny scored for stronger posterior defects.

Isolation and mapping of we3 unc-49(e362) animals were mutagenized using EMS as in Wood (1988). 484 F1s were cloned (representing 968 chromosomes) and their progeny scored for stronger posterior defects. 5 enhanced animals were mutagenized using EMS as in unc-49(e362); vab-7(ed6) (Ahringer, 1996), strains were isolated, the strongest of which contained and their progeny scored for stronger posterior defects. 5 enhanced animals were mutagenized using EMS as in unc-49(e362); vab-7(ed6) (Ahringer, 1996), strains were isolated, the strongest of which contained and their progeny scored for stronger posterior defects.

Complementation tests Phasmid dye filling was assayed in adult hermaphrodites as in Horvitz (1994). 0% (0/532) of wild-type hermaphrodites have defective phasmid dye filling, whereas 100% of phasms from egl-27(e2394) (39/39) or egl-27(n170) (51/51) fail to fill with dye. At 15°C, phasms fail to fill in 66% of surviving we3 mutants. Male tail morphology was assayed using DIC optics: 0/20 wild-type, 8/12 egl-27(n170) and 3/7 surviving we3 males have abnormal tail morphology.

we3 was found to be an allele of egl-27 by complementation tests: egl-27(e2394) or egl-27(n170) hermaphrodites were crossed with we3 unc-4(e120)/+ males and assayed for dye-filling defects (DfY), abnormal male tail morphology (Mtl) and abnormal body morphology (Mor). In the egl-27(e2394) cross, 9/15 hermaphrodites were Dyf, 16/41 males were Mtl and no Mor animals were found. Progeny testing confirmed that one-half were we3 unc-4(e120) egl-27(e2394). In the egl-27(n170) cross, 4/8 hermaphrodites were Dyf, 18/39 males were Mtl and no Mor animals were found. Therefore, we3 fails to complement egl-27(n170) and egl-27(e2394) for Dyf and Mtl, but not for Mor in this test. However, we3 did fail to complement egl-27(n170) for Mor when the mother was egl-27(we3). In the reciprocal cross of we3 unc-4(e120) hermaphrodites with egl-27(n170)+ males: 21/47 non-unc hermaphrodites were Dyf, 5/37 were Mtl and 8/61 males were Mtl. For comparison, in a cross of we3 unc-4(e120) with wild-type males, 24/144 were Mor, 0/80 non-unc hermaphrodites were Dyf and 0/65 males were Mtl.

The egl-27(n170) phasmid-filling defect has a maternal effect. Whereas 51/51 of egl-27(n170) homozygotes from homozygous mother have phasms that fail to fill with dye, none of 30 progeny from an egl-27(n170)/+ mother had phasmid dye-filling defects.

egl-27 cloning egl-27 (we3) animals were injected with pools of cosmid s covering the region where we3 was mapped: T24B4+ F41G3, F41G3+ T13C2, T13C2+ F31E8, F31E8+ C04A2, C04A2+ C44B7, C44B7+ B0252, B0252+ F22D3, F22D3+ C15F1 at a concentration of 5 µg/ml with the plasmid pRF4 (100 µg/ml) which confers a dominant Roller phenotype (Lello et al., 1991). Transgenic lines were scored for the rescue of egl-27(we3) embryonic lethality at 15°C. Two pools containing C04A2 (C04A2+ C44B7 and F31E8+ C04A2) showed rescue. These cosmids were injected individually into egl-27(we3) and lines tested for phasmid dye filling. Two lines carrying C04A2 showed rescue (phasmids failed to fill in 0% and 20% of rollers compared to 66% of egl-27(we3) mutants).

Tissue assays Antibody staining of embryos was essentially as in Albertson (1984). The primary antibodies used were: anti-LIN-26 rabbit polyclonal serum (marks all epidermal and other non-neuronal ectodermal cells; Labouesse et al., 1996) mAb MH27 which recognizes a component of epithelial adherens junctions (Francis and Waterston, 1991), mAb NE2/184 against an antigen expressed in seam cells (Schnabel, 1991) and mAb 3NB12, which detects a subset of pharyngeal muscle cells (Priess and Thomson, 1987).

For the time course, the development of wild-type and double mutants was followed by DIC microscopy for 8 hours at 1 hour time intervals at 22°C, the embryos were placed at 15°C overnight and the terminal phenotype viewed 12 hours later.

RNAi Templates for RNA synthesis contained T3 and T7 phage polymerase promoter sites; single strands were synthesized separately and then annealed as described (Fire et al., 1998). Templates were prepared by PCR using the following primers: for egl-27(exon 11), 5’-ATTA-ACCTCCTACTAAAGGGAGACTTCCGATGAGGCGACTCCT and 5’-ATACGACTCCTAAGGGATGCGATTTGTTGAGATCCG using cosmid C04A2 as a template; for egl-27(exons 1-8), T3 and T7 primers using pJA54 (a RACE clone containing exons 1-8) as a template; egl-1(RNAi), T3 and T7 primers using yk394g5 (an egl-1 cDNA of 436nt covering exons 1, 2 and 199 bp of exon 3) as a template. Double-stranded RNA was injected into the body cavity of adult hermaphrodites at a concentration of 0.5-1 mg/ml. Injected animals were singled on plates for 12 hours, then transferred to new plates every 24 hours. Phenotypes were assayed on the first new plate. Control injections of dsRNA to egl-27(exon 11) into weEx33 (carrying the translational egl-27::gfp reporter gene) resulted in the absence of GFP expression indicating that RNAi removes egl-27 proteins.

Isolation and sequencing of cDNA clones and northern blotting For RACE experiments, the template was mixed stage C. elegans cDNA to which 5’ and 3’ anchors were ligated (Clontech, Marathon cDNA Amplification Kit), kindly provided by Howard Baylis. PCR was carried out using a primer in egl-27 (5’ CAGTTTGTCACACACGTCCTCG) and a primer to the anchor (5’ CCATCTAATACGAGGTCATATAGGGGGCC). Several products were obtained and cloned. The major product contained exons 1-8; 2/10 clones sequenced had part of SL1 at the 5’ end of exon 1 (one was named pJA54). Several smaller minor products were sequenced; two had part of SL1 (TTTGAG) at the 5’ end of exon 2. Further PCR reactions using wild-type mixed stage cDNA confirmed additional exons. Using JA45 (in exon 8; 5’ TCAACACTCATCTTCACCGTT) and JA42 (in exon 11; 5’ GGACCTGACATTGTTGAG) a product containing exons 8, 9, 10 and 11 was obtained. PCR reactions, using a primer to SL1 and one in exon 11 (JA42), identified products with SL1 on the 5’ end of
Global embryonic patterning in *C. elegans* 2485

muscle and epidermal cells, which results in a disorganised posterior end (Ahringer, 1996). To identify additional genes important for embryonic patterning, we screened for genetic enhancers of a weak vab-7 allele. *vab-7(ed6)* mutants have very mild posterior defects (Fig. 1A). We obtained 5 enhanced strains with stronger posterior defects from 968 chromosomes screened and from the strongest isolated the mutant *we3*. When separated from *vab-7(ed6)*, *we3* mutants are 89.5% lethal and have variable body defects which are most severe in mid- and posterior regions (Fig. 1B; Table 1). These defects are cold sensitive (Table 1) and maternally rescued (see Materials and Methods). *we3* retains some zygotic activity, but when grown as a homozygote at 15°C, it behaves as a strong loss-of-function mutation (see Materials and Methods).

We retested the enhancement of *vab-7(ed6)* by *we3* and found that it has a zygotic component. *we3* homozygotes derived from *we3/+* mothers have essentially wild-type morphology due to maternal rescue. However, *we3; vab-7(ed6)* homozygotes derived from *we3+; vab-7(ed6)* mothers have stronger posterior defects than *vab-7(ed6)* alone (see Materials and Methods).

From complementation tests, we found that *we3* is a new allele of the gene *egl-27* (see Materials and Methods). The canonical allele of *egl-27*, *n170*, has pleiotropic defects shared by *we3*: hermaphrodites are variably egg-laying defective (Egl), male tails (the copulatory structure) have abnormal morphology and the phasmid sensory neurons, which are normally exposed to the environment, fail to fill with dye (Desai et al., 1988; Garriga et al., 1993; Trent et al., 1983; Herman et al., 1999; Table 1, Materials and Methods, and data not shown). However, unlike *we3*, *egl-27(n170)* mutants have normal body morphology.

Muscles and epidermal cells are disorganised in *egl-27(we3)* mutants

To investigate the body morphology defects in *egl-27(we3)* embryos, we assayed the organization of two tissues where *vab-7* mutants are known to have patterning defects: body wall muscles and the epidermis (Ahringer, 1996). In wild-type embryos, muscles are arranged in 4 rows running from anterior to posterior (Fig. 1C.D). In *egl-27(we3)* mutants, although muscle cell number is normal (Table 2), muscle cells are found

### Table 1. *egl-27(we3)* and RNAi phenotypes

<table>
<thead>
<tr>
<th>Strains</th>
<th>Embryo-L1 lethal</th>
<th>Viable with body defects</th>
<th>Wild-type morphology</th>
<th>Dye-filling defective*</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type (n=532)</td>
<td>0.4%</td>
<td>0%</td>
<td>99.6%</td>
<td>0% (n=540)</td>
</tr>
<tr>
<td><em>egl-27(we3)</em> 15°C (n=456)</td>
<td>89.5%</td>
<td>8%</td>
<td>2.5%</td>
<td>66% (n=41)</td>
</tr>
<tr>
<td><em>egl-27(we3)</em> (n=734)</td>
<td>7%</td>
<td>42%</td>
<td>51%</td>
<td>68% (n=28)</td>
</tr>
<tr>
<td><em>egl-27(exon 11)</em> 15°C (n=187)</td>
<td>96.8%</td>
<td>0%</td>
<td>3.2%</td>
<td>nd</td>
</tr>
<tr>
<td><em>egl-27(exon 11)</em> (n=425)</td>
<td>20.5%</td>
<td>61%</td>
<td>18.5%</td>
<td>100% (n=104)</td>
</tr>
<tr>
<td><em>egl-27(exons 1-8)</em> (n=510)</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>47% (n=98)</td>
</tr>
<tr>
<td><em>egr-1(RNAi) + egl-27(exon11) (n=679)</em></td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>na</td>
</tr>
<tr>
<td><em>egr-1(RNAi) + egl-27(we3) (n=342)</em></td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>na</td>
</tr>
<tr>
<td><em>egr-1(RNAi) + egl-27(exons 1-8) (n=152)</em></td>
<td>96.7%</td>
<td>0%</td>
<td>3.3%</td>
<td>nd</td>
</tr>
<tr>
<td><em>egr-1(RNAi) + egl-27(n170) (n=241)</em></td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>na</td>
</tr>
</tbody>
</table>

The first column specifies the strain and the number of individuals scored for the phenotypes in columns 2-4. When no temperature is given, the experiment was done at 22°C.

* Dye filling was scored in adult hermaphrodites; n specifies the number of individuals examined; na, not applicable; nd, not done.
in clusters and often do not form rows (Fig. 1E,F). This phenotype is similar to, but stronger than that seen in \textit{vab-7} null mutants (Ahringer, 1996). These defects are not due to loss of \textit{vab-7} protein since \textit{vab-7} is expressed normally in \textit{egl-27(we3)} mutants (not shown). In addition, the abnormal pattern of muscle cells in \textit{egl-27(we3)} mutants is not confined to the posterior as in \textit{vab-7} mutants.

To analyse epidermal cell patterning, we looked at seam cells, which are lateral epidermal cells. Late stage embryos have 20 seam cells that lie in two rows along the animal (Fig. 1G; Sulston et al., 1983). In \textit{egl-27(we3)} mutants, the seam is often branched and interrupted (Fig. 1H), indicating that seam cell organization is abnormal. However, seam cells are differentiated as shown by their expression of a seam antigen (Fig. 1H), and their number is normal (Table 2), as counted by the nuclear seam cell marker SCM (Terns et al., 1997).

These data show that \textit{egl-27} is not required for the production or differentiation of muscle or seam epidermal cells, but is needed for their proper positioning in the embryo. As shown previously for \textit{vab-7} mutants (Ahringer, 1996), such disorganisation is an indication that patterning within a tissue is defective. Postembryonic defects of \textit{egl-27(we3)} mutants (in egg-laying, male tail morphology and phasmid dye filling) suggest that \textit{egl-27} also has additional developmental roles.

### Cloning of \textit{egl-27}

The genetic mapping of \textit{egl-27} narrowed the gene to a region of 9 cosmids. We first injected pools of cosmids and then single cosmids into \textit{egl-27(we3)} mutants and tested for rescue of the mutant phenotype. We found that cosmid C04A2 had rescuing activity (see Materials and Methods). To determine which gene on C04A2 encodes \textit{egl-27}, we took advantage of RNA-mediated gene inactivation (RNAi; Fire et al., 1998). Injection of double-stranded RNA (dsRNA) corresponding to a gene into a wild-type hermaphrodite will inactivate that gene in her progeny, mimicking a null phenotype (Fire et al., 1998). We found that C04A2.2(RNAi) resulted in progeny

![Fig. 1. Characterisation of \textit{egl-27(we3)} and \textit{egl-27::gfp} expression.](image)

(A) \textit{vab-7(ed6)} L1 hermaphrodite is nearly identical to wild type except for a small bulge at the tip of the tail (arrow), where the wild-type tail is sharply pointed. (B) \textit{egl-27(we3)} L1 grown at 15°C. (C-F) Muscle patterning in wt (C,D) and \textit{egl-27(we3)} (E,F) embryos at 1.5-fold stage of development. Muscle cells in D and F are visualised using \textit{hlh-1::gfp}, a reporter for the \textit{C. elegans} MyoD homolog (Krause et al., 1990; K. Dej, S. Xu, and A. Fire personal communication); (C,E) DIC images of the same embryos. In D, two of the four muscle rows are visible in this focal plane. Arrow in F points to a cluster of muscle cells. (G,H) Seam patterning in wt (G) and \textit{egl-27(we3)} (H), visualised using antibody NE2/1B4.14; arrows in H shows forked and disrupted posterior seam. (I) L1 larvae induced by \textit{egl-27(exon 11)} RNAi. (J,K) \textit{egl-27::gfp} expression in 1.5-fold embryo (J) and L3 hermaphrodite (K). All somatic cells appear to express the reporter gene. Scale bar in B is for BJ; scale bar in C is for C-H and J.

### Table 2. Muscle and seam cell number in \textit{egl-27(we3)} and double mutants

<table>
<thead>
<tr>
<th>Strains</th>
<th>Muscle cell count</th>
<th>Seam cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>61.2 (n=6; range=55-68)</td>
<td>15.8 (n=39; range=10-20)</td>
</tr>
<tr>
<td>\textit{egl-27(we3)}</td>
<td>62.5 (n=6; range=54-70)</td>
<td>17.8 (n=56; range=8-20)</td>
</tr>
<tr>
<td>\textit{egl-27(exon 11)} + \textit{egr-1 (RNAi)}</td>
<td>59.4 (n=7; range=46-69)</td>
<td>4.5* (n=23; range=1-12)</td>
</tr>
</tbody>
</table>

Muscle cell numbers were counted from the expression of \textit{hlh-1::gfp} (Krause et al., 1994); muscle numbers counted are lower than the 81 expected in wild-type embryos, probably due to mosaic expression of the reporter. Seam cell number was counted using \textit{SCM::lacZ} (Terns et al., 1997).

*Seam cell number appeared normal based on the expression of a seam antigen (i.e., many seam cells not expressing SCM did express the seam antigen in Fig. 7D; data not shown).
with a phenotype very similar to that of egl-27(we3) (Fig. 1I). By sequencing this locus from egl-27(we3) DNA, we found that the we3 mutation introduces a stop codon into the gene (see below), confirming that C04A2.2 corresponds to egl-27.

Interestingly, like egl-27(we3), the C04A2.2(RNAi) phenotype is cold-sensitive (Table 1, egl-27(exon 11) rows). The similarity in phenotype between egl-27(we3) and egl-27(RNAi) supports the view that egl-27(we3) is a strong loss-of-function mutation.

egl-27 encodes multiple transcripts
As C04A2.2 was only a gene prediction (The C. elegans Sequencing Consortium, 1998), we sequenced cDNA clones and performed RACE experiments to determine the gene structure. egl-27 extends much farther 5' than the C04A2.2 prediction (Fig. 2). We found evidence for multiple egl-27 transcripts from our cDNA clones: in different cDNAs, the SL1 trans-spliced leader was found on exon 1, exon 6, exon 10 and exon 11 (see Materials and Methods). Spliced leaders are added to the 5' ends of 70% of mRNAs in C. elegans (Zorio et al., 1994). We also found micro-heterogeneity in the 3' splice site for intron 7 (see legend to Fig. 4).

To explore further the transcripts produced from the egl-27 locus, we performed northern blots. Fig. 3 shows that at least 7 transcripts are produced: three major transcripts of 4.3 kb, 2.75 kb and 2.55 kb, and four minor ones of 3.5 kb, 3.2 kb, 3.0 kb and 1.5 kb; an exon 11 probe detects all transcripts, but exons 1-8 detect only the 4.3 kb major transcript and some minor transcripts (Fig. 3). The predicted structures of the three major transcripts is shown in Fig. 2, based on the results from northern blotting and cDNA sequencing.

We sequenced egl-27 exons from egl-27(we3) DNA and found that we3 introduces a stop codon into exon 11 (Figs 2, 4), so we3 should affect all egl-27 products. By northern blotting, this mutation does not result in the loss of any egl-27 RNAs (Fig. 3). This suggests that egl-27 is not needed for its own expression.

An egl-27 reporter gene is expressed ubiquitously in nuclei
To learn where egl-27 is expressed, we constructed a translational fusion of the coding region of GFP to exon 11 of egl-27. Since exon 11 is contained in all egl-27 transcripts, we expect this reporter gene to reflect expression of all products made from the locus. egl-27::gfp is expressed in the somatic nuclei of most or all cells from the 50-cell stage of embryogenesis through to adulthood (Fig. 1J,K; additional data...
not shown). *egl-27* is likely to be expressed maternally as well, since *egl-27*(we3) has a maternal effect. This would not have been seen with our reporter construct because transgenes in *C. elegans* usually do not report germline expression (Kelly et al., 1997). Since the GFP coding sequence introduced did not contain a nuclear localisation signal, nuclear expression of the reporter gene suggests that *egl-27* encodes nuclear protein(s).

**EGL-27 is similar to a component of a chromatin regulatory complex with histone deacetylase and nucleosome remodelling activities**

Conceptual translation of the major 4.3 kb RNA yields a protein of 1126 amino acids (Fig. 4). The 2.75 kb and 2.55 kb major transcripts would encode an identical protein that begins at methionine 513 of the large protein (boxed). The four domains described in the text are underlined: ELM1 with diagonals, ELM2 with verticals, SANT with black, and the GA TA-like zinc finger with grey. Shown is the sequence. Positions of introns are marked with filled triangles. In our RACE clones, either of the two splice sites for intron 7 were used; for the protein shown, the second splice was used as all of our long RACE clones (i.e., those that had ends at or near the beginning of exon 1) used this site. The splice sites differ by 9 nucleotides; splicing at the first one results in a protein with SLQ inserted at the position marked for intron 7.

![Fig. 4. EGL-27 sequence. Shown is the translation of the 4.3 kb major *egl-27* RNA. The small major RNAs are both predicted to encode a protein that begins at methionine 513 (boxed). The four domains described in the text are underlined: ELM1 with diagonals, ELM2 with verticals, SANT with black, and the GATA-like zinc finger with grey. Shown is the *egl-27*(we3) mutation, identified in three independent PCR clones, which changes a CAA codon to a TAA (stop) and the position where GFP is fused in the *egl-27*-gfp reporter gene. Positions of introns are marked with filled triangles. In our RACE clones, either of the two splice sites for intron 7 were used; for the protein shown, the second splice was used as all of our long RACE clones (i.e., those that had ends at or near the beginning of exon 1) used this site. The splice sites differ by 9 nucleotides; splicing at the first one results in a protein with SLQ inserted at the position marked for intron 7.](http://example.com/fig4.png)
A Pairwise sequence identities

<table>
<thead>
<tr>
<th></th>
<th>EGL-27</th>
<th>KIAA0458</th>
<th>T2C7C4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIAA0458</td>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2C7C4.4</td>
<td>22%</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>MTA1</td>
<td>26%</td>
<td>36%</td>
<td>45%</td>
</tr>
</tbody>
</table>

B SANT domain

<table>
<thead>
<tr>
<th></th>
<th>KIAA0458/123-174</th>
<th>T2C7C4.4/479-530</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTAG1_HUMAN/283-334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Cor/435-485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Cor/622-672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EELR_HUMAN/272-323</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C GATA-like domain

<table>
<thead>
<tr>
<th></th>
<th>EGL-27/433-480</th>
<th>KIAA0458/236-283</th>
<th>T2C7C4.4/584-635</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTAG1_HUMAN/390-441</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EELS_HUMAN/397-453</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D ELM1 domain

<table>
<thead>
<tr>
<th></th>
<th>EGL-27/87-187</th>
<th>T2C7C4.4/13-245</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTA1_HUMAN/4-131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q43479/26-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORC1_HUMAN/45-138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y23 YEAST/368-452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q18210/734-819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q90941/954-1038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q18210/214-262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q18210/1155-1237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDMA_RAT/735-817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGL-27/87-187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E ELM2 domain

<table>
<thead>
<tr>
<th></th>
<th>EGL-27/224-281</th>
<th>KIAA0458/16-74</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2C7C4.2/278-401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTA1_HUMAN/165-226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIAA0071/14-75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10E7.11/81-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E10 xrenia/169-229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1014.9/107-167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P53H10.2/501-565</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EGL-27 with other proteins that contain them. T2C7C4.4 is likely to be the only other *C. elegans* gene that contains all the identified domains of EGL-27, as >99% of the *C. elegans* genomic sequence is available (The *C. elegans* Sequencing Consortium, 1998); we have named this gene *egr-1*, for *egl-27*-related gene.

egr-1 and egl-27 have a redundant embryonic function

Because *egr-1* shares the domain structure of *egl-27*, we wondered whether it had a similar function. To investigate this, we used RNAi to inactivate *egr-1*, alone or in combination with *egl-27*. *egr-1(RNAi)* animals are completely viable, with a
Counts in wild-type and double mutants were done in embryos of similar ages maintained at 22°C. However, small number having mild posterior defects (Table 1; Fig. 7A). However, egr-1(RNAi); egl-27(exon 11) or egr-1(RNAi); egl-27(we3) double mutants are 100% embryonic lethal (Table 1), indicating that egl-27 and egr-1 have a redundant function in the embryo.

Further RNAi experiments showed that this redundancy is at the level of the large egl-27 RNA. Since exon 11 of egl-27 is contained in all transcripts, egl-27(exon 11) should interfere with all egl-27 transcripts. To interfere with only the large egl-27 RNA, we injected dsRNA to exons 1-8 (egl-27(exons 1-8)), which are not contained in the small RNAs. In contrast to egl-27(exon 11), egl-27(exons 1-8) animals do not have body morphology defects, but do have dye-filling defects (Table 1), a phenotype similar to that of egl-27(n170) mutants. This is consistent with the findings of Herman et al. (1999), who showed that egl-27(n170) deletes exons in the large transcript, but not the small ones. We next examined egr-1(RNAi); egl-27(exons 1-8) and found that these double mutants arrested as embryos with the same phenotype as egr-1(RNAi); egl-27(exon 11) (Table 1 and data not shown). This shows that the large egl-27 RNA, which contains the similarity to egr-1 and MTA1, has a shared function with egr-1.

**Double mutant embryos are abnormally patterned**

Double mutant embryos arrest with a striking uniform phenotype: tissues are not properly organised, but they are well differentiated and morphogenesis fails to occur (Fig. 7B-F). To find out when defects initially occur in double mutants, we compared their development to those of wild-type embryos developing at the same time. Wild-type embryogenesis can be conveniently divided into three phases: first, during the initial cell divisions, the axes of the embryo are established and blastomere fates are determined through the actions of maternal genes (Bowerman, 1998). Second, at the 28-cell stage, gastrulation begins. During this phase, the cells of the body are patterned and most of embryonic cell proliferation occurs. At the end of this second phase, cells lie in precise positions where they will form tissues, but they do not yet express terminal differentiation markers. Disruption of regional patterning during this time causes cells to be abnormally positioned (see e.g., Ahringer, 1996; Chisholm and Horvitz, 1995). During the final stage, morphogenesis causes the organised ball of cells to be transformed into a long thin worm as tissues and organs differentiate and become functional.

We found that double mutant embryos develop at the same rate as wild type (Fig. 8). However, cells of the embryo are not properly organised during gastrulation (Fig. 8). For example, intestinal cells in wild type are located in an ordered row but, in double mutants, they are found clustered together (compare Fig. 8C to H). Other cells in double mutants appear similarly disordered (Fig. 7B-F and data not shown).

As development proceeds, double mutants do not undergo morphogenesis (compare Fig. 8D,E with LI), but tissues differentiate normally. For example, intestinal cells in double mutants produce gut granules (a marker of differentiation; Fig. 7O). Muscle cells are found in a wild-type number (Table 2) and are functional, as contractions are evident in double mutants, but they are scattered and are not organised into rows as they are in wild type (compare Fig. 7C to 1E). Pharyngeal tissue is located within a basement membrane and forms a recognizable grinder, but the pharynx is not elongated as in wild type (compare Fig. 7H to 7J). Epidermal cells express the apical membrane antigen MH27 (data not shown), but they do not enclose the embryo (Fig. 7F). Seam cells (lateral epidermal cells) in double mutants are also disorganised but differentiated, as visualised by a seam antigen expressed near the end of embryogenesis (compare Fig. 7D to Fig. 1H). However, most seam cells that express the seam antigen fail to express the nuclear seam cell marker SCM (Table 2 and data not shown). This suggests that SCM may be a target of egl-27/egr-1. Muscle, epidermal, pharyngeal, neuronal and intestinal cells appear to be well differentiated and present in the correct number based on antibody staining and visual inspection (Table 2; Fig. 7 and data not shown). The mispositioning of cells in all tissues coupled with normal

---

**Fig. 6.** Proteins with domains similar to those in EGL-27. Proteins shown were found to contain domains similar to EGL-27 using Blastp or PSI-blast (Altschul et al., 1997). Not every protein identified is shown.

**Table 3. Patterning gene expression in wild-type and double mutant embryos**

<table>
<thead>
<tr>
<th>Strains</th>
<th>vab-7</th>
<th>lin-39</th>
<th>mab-5</th>
<th>egl-5</th>
<th>lin-44</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>21.6 (n=7)</td>
<td>12.8 (n=12)</td>
<td>17.7 (n=6)</td>
<td>20.4 (n=7)</td>
<td>4.7 (n=11)</td>
</tr>
<tr>
<td></td>
<td>range=20-25</td>
<td>range=10-16</td>
<td>range=15-20</td>
<td>range=16-25</td>
<td>range=2-8</td>
</tr>
<tr>
<td>double mutant</td>
<td>21.9 (n=15)</td>
<td>12.8 (n=10)</td>
<td>18.1 (n=9)</td>
<td>20.2 (n=16)</td>
<td>5.0 (n=8)</td>
</tr>
<tr>
<td></td>
<td>range=18-31</td>
<td>range=11-16</td>
<td>range=15-21</td>
<td>range=17-25</td>
<td>range=1-8</td>
</tr>
</tbody>
</table>

Double mutants were generated by injecting ds RNA to egr-1(RNAi) + egl-27(exon11). The number of cells expressing the indicated reporter genes are shown. Counts in wild-type and double mutants were done in embryos of similar ages maintained at 22°C.
differentiation suggests that *egl-27* and *egr-1* specifically function in cell patterning in diverse tissue types.

**A HOX gene target is not expressed in double mutants**

The global disorganisation of cells of double mutants is similar to that seen regionally in the posterior of *vab-7* mutants. Since *egl-27*/*egr-1* are likely to affect transcription, we reasoned that the phenotype could be due to changes in the expression of many regionally acting developmental genes. To test this, we first assayed the expression of *vab-7*. Double mutants express *vab-7* in a normal number of cells, but in a disorganised pattern (Table 3; Fig. 7G,I). Because *egl-27* and *egr-1* are not required for *vab-7* expression, they either act with or downstream of *vab-7*. Likewise, *egl-27::gfp* expression is normal in *vab-7* mutants suggesting that *vab-7* does not regulate *egl-27* transcription (not shown).

We next asked whether the expression of other regionally acting genes might be affected in double mutants. We assayed the expression of four zygotic patterning genes that are first expressed in the embryo: three HOX genes (*lin-39, mab-5* and *egl-5*; Costa et al., 1988; Clark et al., 1993; Wang et al., 1993) and *lin-44*, a *wnt* homologue required for the correct pattern of cell divisions in the tail (Herman and Horvitz 1994; Herman et al., 1995). Like *vab-7*, all are expressed in a normal number of cells (Fig. 7K-L; Table 3). This shows that many developmental patterning genes are expressed normally in double mutants.

Since EGL-27 and EGR-1 are likely to regulate chromatin structure, thereby affecting the ability of transcription factors to function, one possibility is that they act in conjunction with transcription factors involved in patterning. To test this idea, we assayed the expression of *hlh-8*, a target of the HOX gene *mab-5* (Harfe et al., 1998) in double mutants. So far, this is the only known target of any of the genes assayed above. In wild-type four-fold embryos, where the pharyngeal grinder is well formed, *hlh-8::gfp* is highly expressed in the M cell (20/20 embryos; Fig. 7N). In contrast, in double mutants with a visible

---

**Fig. 7.** *egl-27* and T27C4.4 have a redundant global patterning function. (A) L2 larvae from an hermaphrodite injected with *egr-1* dsRNA; arrow points to slight tail truncation. (B) Double mutant embryo from an hermaphrodite co-injected with *egr-1* dsRNA and *egl-27* dsRNA; arrow points to a cluster of intestinal cells. (C) *hlh-1::gfp* expression of (B), showing disorganised muscle cells. (D) Double mutant seam antigen expression; compare to Fig. 1H. (E) LIN-26 expression in a wt threefold embryo in rows of epidermal cells. (F) LIN-26 expression in a double mutant; epidermal cells are clustered on the surface. (G) wt *vab-7::lacZ* expression. (H) Pharyngeal muscle cells of wt embryo. (I) Double mutant *vab-7::lacZ* expression. (J) Pharyngeal muscle cells of embryo in I. (K) wt *egl-5::gfp* expression. (L) Double mutant *egl-5::gfp* expression. (M) wt *hlh-8::gfp* containing embryo. (N) *hlh-8::gfp* expression in the M cell of embryo in M. (O) Double mutant *hlh-8::gfp* containing embryo; arrow points to a round cluster of intestinal cells with visible birefringent gut granules, arrowhead points to the pharyngeal grinder. (P) Weak *hlh-8::gfp* in the M cell of double mutant embryo in O (arrow). This expression was not visible using the photographic settings for the wild-type expression in N. Scale bar in P is for B-P.
and divisions, some of which are controlled by HOX genes. They showed that (Herman and Horvitz, 1994; Herman et al., 1995). In addition, perhaps other zygotic patterning genes such as 7D) is present. This supports the hypothesis that marker first expressed at this time (the seam antigen in Fig. 27, studied other aspects of the egl-27 phenotype. They found that egl-27 mutants have defects in T cell polarity, which has been shown to be controlled by lin-44, a wnt family member (Herman and Horvitz, 1994; Herman et al., 1995). In addition, they showed that egl-27 mutants have defects in cell migrations and divisions, some of which are controlled by HOX genes. grinder, hlh-8::gfp is essentially absent (5/10 embryos had no expression and 5/10 had the barely detectable expression shown in Fig. 7P). We believe that double mutants survive long enough for hlh-8 to be expressed, since a late embryonic marker first expressed at this time (the seam antigen in Fig. 7D) is present. This supports the hypothesis that mab-5, and perhaps other zygotic patterning genes such as vab-7, require egl-27 or egr-1 for activity.

DISCUSSION
egl-27 and egr-1 are C. elegans genes with similarity to MTA1, a protein found in the NURD chromatin remodelling complex. These genes have an important redundant function in the organisation of embryonic cells during the phase of body patterning. Based on our phenotypic analyses and the known role of MTA1 in chromatin remodelling, we propose that EGL-27 and EGR-1 are components of a protein complex that specifically functions with sequence-specific transcription factors involved in embryonic patterning.

Multiple developmental roles of egl-27
In addition to its redundant function with egr-1, egl-27 also has unique functions. egl-27 mutants have pleiotropic phenotypes, including abnormal body morphology and postembryonic defects in the development of the male tail and the phasmids (Desai et al., 1988; Garriga et al., 1993; Trent et al., 1983; Herman et al., 1999; Table 1, Materials and methods, and data not shown). Our studies focused on the embryonic role of egl-27 and showed that it is required for proper pattern of muscle and epidermal cells. Herman et al. (1999), who also cloned egl-27, studied other aspects of the egl-27 phenotype. They found that egl-27 mutants have defects in T cell polarity, which has been shown to be controlled by lin-44, a wnt family member (Herman and Horvitz, 1994; Herman et al., 1995). In addition, they showed that egl-27 mutants have defects in cell migrations and divisions, some of which are controlled by HOX genes. Taken together, these results support the view that there is a widespread requirement for egl-27 function in developmental patterning.

Functional redundancy of egl-27 and egr-1
egl-27 has partial functional redundancy with a related C. elegans gene, egr-1. Inhibiting their activities together results in the abnormal positioning of cells without affecting tissue determination or differentiation. To our knowledge, no previously characterised mutants have this phenotype. As we have only studied egr-1 using RNAi, an important goal for the future will be to identify mutations in the gene.

Although double mutants have global defects in development, several observations argue that egl-27/egr-1 are not affecting cellular health or gene expression generally. First, tissues in double mutants, though not organised, appear healthy. We did not see increased cell deaths, widespread necrosis or lack of adhesion between cells during the time of normal embryogenesis. Second, cell lineages and the process of gastrulation appear to be normal based on the positions and numbers of cell types. Third, tissues in double mutants are well differentiated and functional where we can assay them (e.g., muscle twitching), and even late differentiation markers are expressed (e.g., the seam antigen in Fig. 7D). Therefore, double mutants are not blocked in development at an early stage and egl-27/egr-1 are not needed for the transcription of terminal differentiation products. Rather egl-27/egr-1 appear to have a specific role in positioning cells in the embryo at the time of major body patterning.

This phenotype of double mutants is consistent with a defect in patterning in all regions of the embryo. We therefore investigated whether the expression of a number of regional developmental genes (vab-7, HOX genes and lin-44) was affected in double mutants, but found that these are expressed in a normal number of cells. Although expression is normal, the activity of the HOX gene mab-5, a homeodomain transcription factor (Costa et al., 1988), is apparently altered, as a target (hlh-8) is not expressed in double mutants. This
suggests that MAB-5 requires EGL-27/ERG-1 in order to activate hlh-8. We propose that EGL-27/ERG-1 affect the ability of many transcription factors involved in patterning to function, and that cells fail to be organised because their patterning is absent. For example, vab-7 patterns muscle and epidermal cells in the posterior of the embryo; in its absence, these cells still differentiate as muscle and epidermal tissue, but they are abnormally positioned resulting in disorganisation of the posterior end (Ahringer, 1996). Likewise, the vab-3 gene, which encodes a Pax6 homologue, patterns anterior epidermal cells; in its absence, the anterior region is disorganised (Chisholm and Horvitz, 1995).

We also found that SCM, a nuclear marker of seam cells, fails to be expressed although seam cells are present and differentiated. One possibility is that SCM may be involved in seam cell patterning and may be regulated by EGL-27/ERG-1. Neither the function of SCM nor how SCM expression is controlled are yet known. Studying how hlh-8 and SCM expression are activated should shed light on how egl-27/egr-1 and regional patterning genes might cooperate.

Histone acetylation and deacetylation in development

Many sequence-specific transcription factors function with multiprotein complexes that alter histone acetylation or remodel nucleosomes (reviewed in Kadonaga, 1998; Struhl, 1998). Histone hyperacetylation is associated with transcriptional activity, whereas histone hypoacetylation is correlated with transcriptionally silent chromatin and heterochromatin. Alterations in chromatin structure by ATP-dependent nucleosome remodelling complexes is thought to activate transcription.

Recently, functions for histone acetylation (HAT) complexes in development have been identified. For example, dCBP, a Drosophila homologue of the mammalian HAT proteins CBP and p300, is involved in signalling pathways important for pattern formation (Akimaru et al., 1997a,b; Waltzer andBienz, 1998). In C. elegans, the CBP homologue cbp-1 is required for the development of all non-neuronal tissues: in its absence, no mesodermal, epidermal or intestinal development occurs and most cells appear to differentiate into neurons (Shi andMello, 1998).

Developmental roles for histone deacetylases (HDA) have also been identified. For example, one of a number of C. elegans histone deacetylases, hda-1, antagonizes the effect of cebp-1 on intestinal differentiation (Shi andMello, 1998). Further, two C. elegans RbAp46/48 homologues, histone-associated proteins which are found in HDA complexes (Taunton et al., 1996), are needed for development past the 100-cell stage, suggesting a shared general cellular function (Shi andMello, 1998). Recently, the C. elegans gene lin-53 was shown to encode one of these RbAp46/48 homologues (Lu andHorvitz, 1998). LIN-53 is involved in negatively regulating vulval cell fates promoted by the Ras pathway and is likely to act in a multiprotein complex containing the histone deacetylase HDA1 and the retinoblastoma homolog LIN-35 (Lu andHorvitz, 1998).

In summary, chromatin remodelling complexes have important roles in development, but few of their targets are known. Finding these will help our understanding of how transcription factor activities are regulated to promote particular developmental outcomes.

Possible functions for egl-27 and egr-1

Recently, the human protein MTA1, which is similar to EGL-27 and ERG-1 was found to be a component of a multiprotein complex called NURD, which has both ATP-dependent nucleosome remodelling and histone deacetylation activities (Xue et al., 1998). A similar complex containing an MTA1 related protein, MTA2, was identified by Zhang et al. (1998). Besides MTA1 the NURD complex contains the histone deacetylases HDAC1 and HDAC2, the two histone-binding proteins RbAp48/46, CHD4 (for chromodomain-helicase-DNA binding), and several unidentified proteins. Based on the similarity between EGL-27/ERG-1 and MTA1, and the phenotype of double mutants, we suggest that EGL-27 and ERG-1 are components of a multi-protein chromatin regulatory complex that is required for the functions of regional patterning proteins. Good candidates for interaction with an EGL-27 complex are VAB-7 and the HOX proteins. In the future, it will be important to identify proteins with which EGL-27 and ERG-1 interact, as these should shed light on their biochemical function.

How might an EGL-27-containing complex regulate the activity of these proteins? In one simple model, these transcription factors could associate with the complex and bring it to target genes. This could cause chromatin around the target genes to be altered, leading to changes in transcriptional activity. It is not yet known whether the NURD complex has transcriptional repressing or activating activities, or both; experiments in Xue et al. (1998) suggest a repressive function. However, loss of expression of hlh-8 and SCM in double mutants suggests an activating function. Genetic and biochemical studies in C. elegans involving egl-27 and egr-1 should help both to identify further components and to understand the functions of the complex.

We thank Jose de Celis, Richard Durbin, Gos Micklem, Jordan Raff, Daniel St. Johnston and members of the laboratory for helpful comments on the manuscript, and Vivian Bardwell, Erik Miska and Tony Kouzarides for useful discussions. We are grateful to Cara Neades for providing excellent technical assistance. We also thank Howard Baylis, Alan Coulson, Andy Fire, Mike Herman, Jonathan Hodgkin, Yuji Kohara, Michel Labouesse and Cynthia Kenyon for strains, reporter constructs, cDNAs and antibodies. M. Herman, Q. Ch’ng, S. Hettenbach, T. R. Ratliff, C. Kenyon, and R. K. Herman kindly communicated results prior to publication. Some strains used in this study were obtained from the CGC, which is supported by the NIH-NCCR. F. S. was supported by an EMBO fellowship and a European Union Marie-Curie postdoctoral fellowship. A. G. B. is supported by Wellcome Trust grant 048880, and J. A. was supported by a Wellcome Trust Career Development Award (No. 045515/Z/95/Z/PMG/AA).

REFERENCES


